An enriched finite element model with q-refinement for radiative boundary layers in glass cooling
نویسندگان
چکیده
Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P1 approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analyzed for glass annealing in two enclosures where the simplified P1 approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.
منابع مشابه
Model hierarchy-based optimal control of radiative heat transfer
We present a model hierarchy multilevel optimisation approach to solve an optimal boundary control problem in glass manufacturing. The process is modelled by radiative heat transfer and formulated as an optimal control problem restricted by partial differential algebraic equations (PDAE) and additional control constraints. We consider a sequence of model approximations given by spacetime depend...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملOptimization with Partial Differential Equations
We present a model hierarchy multilevel optimisation approach to solve an optimal boundary control problem in glass manufacturing. The process is modelled by radiative heat transfer and formulated as an optimal control problem restricted by partial differential algebraic equations (PDAE) and additional control constraints. We consider a sequence of model approximations given by space-time depen...
متن کاملA Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 258 شماره
صفحات -
تاریخ انتشار 2014